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Abstract. Laser plasma accelerators are able to produce high quality electron beams from 1 MeV to
1 GeV. The next generation of plasma accelerator experiments will likely use a multi-stage approach
where a high quality electron bunch is first produced and then injected into an accelerating structure.
In this paper we present scaled particle-in-cell simulations of a 10 GeV stage in the quasi-linear
regime. We show that physical parameters can be scaled to be able to perform these simulations
at reasonable computational cost. Beam loading properties and electron bunch energy gain are
calculated. A range of parameter regimes are studied to optimize the quality of the electron bunch
at the output of the stage.
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INTRODUCTION

Laser plasma accelerators are able to produce very high gradient electric fields which
make them suitable to accelerate particles to high energies in a very short distance.
Production of high quality electron beams has been demonstrated, with energies up to
1GeV reached in a few centimeters [1]. Until recently, acceleration of these electron
beams relied on the self-trapping of background plasma electrons. Experiments have
shown that it is now possible to control the quality of the electron beam by controlling
the injection process and then further accelerating the beam [2, 3, 4]. In this paper we
examine the design of a 10 GeV accelerator stage where we assume that a high quality,
mono-energetic electron beam is externally injected in a “dark current free” (i.e., where
there is no self-trapping) plasma accelerating structure. Parameters of the accelerating
stage are studied in order to optimize charge, energy and energy spread of the bunch.

SCALING LAWS

The acceleration length, and hence the energy gain, in a laser plasma based accelera-
tor, is limited by the dephasing of the electrons, i.e., the electrons stop being accelerated
when they outrun the wake [5]. To increase the dephasing length and increase the energy
gain up to 10 GeV, the density must be decreased to the order of 1017 cm−3 giving an ac-
celeration length of about a meter [6]. Using a fully self-consistent Particle-In-Cell (PIC)
algorithm to simulate such a stage is still impractical with state of the art computing fa-
cilities. The use of reduced models [7, 8, 9] is therefore required to model acceleration
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of particle beams to these high energies as it can greatly reduce the required number
of simulation hours. Here we use the fully self-consistent PIC algorithm, implemented
in the code VORPAL [10], to simulate the evolution of an externally injected electron
bunch over the accelerating stage by scaling the physical quantities with the plasma den-
sity. In this way, it is possible to use short scaled simulations at high density and deduce
the properties of the accelerated electron bunch by verifying and using scaling laws. This
also allows us to fully simulate the laser pulse evolution up to depletion.

In this paper we study a laser plasma accelerator stage in the standard regime [5]. The
normalized laser intensity profile is of the form a2

0 exp(−2x2/L2)exp[−2(y2 + z2)/w2
0]

where a2
0 = 7.32× 10−19(λ0[µm])2I0[W/cm2] with λ0 the laser wavelength and I0 the

laser intensity, x is the longitudinal direction, L the laser pulse length, and w0 the laser
spot size. The laser is guided by a transverse parabolic plasma channel whose depth is
adjusted, when the power of the laser is close to the critical power, to compensate for the
self-focusing such that the laser beam radius undergoes minimal variation. The injected
electron bunch profile is nb ∼ exp(−x2/2σ2

L)exp[−(y2 + z2)/2σ2
r ], with σL the bunch

length and σr the bunch radius.
In the scaled simulations the dimensions of the problem are kept constant compared

to the plasma wavelength λp, i.e, kpL, kpw0, kpσL and kpσr are constant while the
density is varied, where kp = 2π/λp ∝

√
n0 is the plasma wave number and n0 the

plasma density. The normalized laser strength a0 is also fixed, fixing the ratio of the
laser power over the critical power. Using the fixed parameters kpL = 2, kpw0 = 5.3
and a0 = 1, and n0 = 1019 and 1018 cm−3 we verify that the peak accelerating electric
field scales as

√
n0 as expected [11]. The laser evolution is also consistent. Although

the laser betatron oscillation and Rayleigh length are not constant compared to λp, this
issue is overcome by the use of the plasma channel and indeed we verify that the spot
size stays constant along the guiding structure and that the same amount of energy is
depleted after a dephasing length. Because of this, the wakefield structure also scales
with the density, i.e., contours of the accelerating field overlay within a few percent,
when normalizing the lengths by λp; this has also been confirmed using n0 = 1017 cm−3

and reduced models. We also verify that the dephasing length scales as λ 3
p/λ 2

0 ∝ n−3/2
0

[6]. Note that the wake phase velocity depends on the plasma density for a constant laser
wavelength. This confirms the scaling laws predicted in the linear regime and extends
them to multi-dimensions and to the quasi-linear regime.

The energy gain of a stage is given by LaccEx ∝ 1/n0, where Lacc is the accelerating
length which is equal to the dephasing length in the linear regime. The linear theory
predicts that, for the parameters given above, an energy gain of 100 MeV is obtained at
n0 = 7× 1018 cm−3 and 10 GeV is achieved at n0 = 7× 1016 cm−3. A gain of 8 GeV
has been demonstrated with test particles using a simulation in the boosted frame in
1D at 1017 cm−3 [12, 13], consistent with the linear theory which predicts a gain of 7
GeV in this case. By using test particles in the PIC simulations, we find that because
the wake is slightly non-linear, 97 MeV and 1120 MeV can be achieved respectively
at 1019 and 1018 cm−3. We can then predict that we will obtain 10 GeV with n0 = 1017

cm−3 over Lacc = 1 m. We next perform simulations with the PIC algorithm at n0 = 1019

cm−3 where the beam is accelerated to 100 MeV in 1 mm to determine beam loading
performance and electron beam quality. Using the scaling laws given here we can deduce
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the properties of the bunch in a 1017 cm−3 stage.

BEAM LOADING

A charged electron beam, when propagating into the plasma, creates its own wake which
damps the wakefield created by the leading laser pulse. The maximum amount of charge
that can be loaded is that for which the wakes created by the electron beam and the laser
pulse are equal. For a short bunch (kpσL < 1) in the linear regime (Ex/E0 < 1) it is given
by [14]:

Nmax =
1

2kpre

Ex

E0

k2
pσ2

r

HR
≈ 9.3×109 Ex/E0√

n0/1016cm−3

k2
pσ2

r

HR
(1)

with

HR =
k2

pσ2
r

2
exp
(
k2

pσ
2
r /2
)

Γ

(
0,

k2
pσ2

r

2

)
(3D) (2)

HR =
√

π

2
kpσr exp

(
k2

pσ
2
r /2
)

Erfc
(

kpσr√
2

)
(2D) (3)

where E0 = c2mkp/e is the cold non-relativistic wavebreaking limit, re is the classical
electron radius, and Γ(a,x) =

∫
∞

x e−tta−1dt.
Simulations verify that Eq. (1) is accurate for a mildly nonlinear laser-driven wake-

field (a0 ∼ 1). Figure 1 shows the percentage of beam loading in terms of peak ac-

FIGURE 1. Beam loading, in terms of peak accelerating electric field, as a function of charge, normal-
ized by

√
n0(cm−3)/1017×

(
HR/k2

pσ2
r
)
/(Ex/E0). The dashed line is theory, the points are for 2D (+)

and 3D (∗) simulations and for the following cases from the lighter gray to the darker: kpL = 2, a0 = 1,
n0 = 1019 cm−3, kpσL = 0.05 and beam radii kpσr = 0.3 (orange), kpσr = 1 (magenta), kpσr = 1.8,
(green); scaling with a0 is shown at kpL = 1, a0 =

√
2, n0 = 1019 cm−3, kpσr = 0.3 (blue); scaling with

density is shown at kpL = 2, a0 = 1, n0 = 1018 cm−3, kpσr = 1.8 (black).
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celerating electric field as a function of the electron bunch charge, Q, normalized by√
n0(cm−3)/1017×

(
HR/k2

pσ2
r
)
/(Ex/E0). The dashed line is the coefficient given by

Eq. (1) and the points represent different simulated cases. The scaling is verified for dif-
ferent values of σr, n0, and Ex/E0, with kpσL = 0.05, for both 2D and 3D simulations.
Simulations in 2D at n0 = 1017 cm−3 also agree with the scaling. This data implies that
we can load 60 pC for kpσr = 0.3 and 200 pC for kpσr = 1 with n0 = 1017 cm−3 and
a0 = 1, kpL = 2 and kpw0 = 5.3.

ACCELERATING STAGE

We now consider the design of an accelerating stage with beam loading. Since the
electron bunch creates its own wake, strong electric field gradients can be introduced
inside the bunch which induce energy spread as the electrons are accelerated. It is
possible to shape the bunch such that Ex stays longitudinally constant inside the bunch
[14]. This can be achieved by using a triangular bunch, or by increasing the bunch length
σL while keeping the charge constant. Ideally, minimizing the energy spread by this
method requires that the bunch stays at the same phase over the acceleration length.
This can be achieved by axially tapering the plasma density profile. In principle, some
optimum tapering can be found such that the electron bunch does not dephase [15].

Here we simply consider a linear plasma taper and a gaussian electron bunch loaded
in the second bucket after the laser pulse. Because the beam is loaded further behind the
driver a milder taper is needed. Although the tapering is not optimum and the electron
bunch still dephases, energy gain is increased and momentum spread is low. Figure 2(a)
shows the electron momentum distribution (solid line) with and without plasma density

FIGURE 2. (a) Electron (solid line) and positron (dashed line) longitudinal momentum distribution
without (peak centered around px ∼= 25 MeV/c) and with (peak centered around px ∼= 90 MeV/c) plasma
taper for a0 = 1, kpL = 2, kpw0 = 5.3, n0 = 1019 cm−3, kpσL = 0.5, kpσr = 1, Q = 22.8 pC (corresponding
to Q = 228 pC at n0 = 1017 cm−3). (b) Electron spectra with plasma taper for stages at n0 = 1019 cm−3,
kpw0 = 5.3, kpσL = 0.5, kpσr = 1 and with approximately equivalent beam loading at a0 = 1, kpL = 2,
Q = 22.8 pC (black) and a0 =

√
2, kpL = 1, Q = 31.4 pC [magenta (gray)].
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taper with kpσL = 0.5 (so the accelerating field is constant longitudinally inside the
bunch at the loading phase) and kpσr = 1, and for the laser parameters a0 = 1, kpL = 2
and kpw0 = 5.3. The charge in the bunch is 22.8 pC, the wakefield being approximately
50% beam loaded. The bunch is loaded with an initial momentum of 10 MeV/c and an
initial momentum spread of 0.9 MeV/c (9%) full width at half maximum (FWHM). The
plasma taper is of the form n(x) = n0(13.2 x[cm] + 1) where n0 = 1019 cm−3 on axis,
i.e., the plasma density varies by 40% in 0.3 mm. Without plasma taper the electron
bunch is accelerated to ∼= 24.5 MeV/c (i.e., 14.5 MeV/c energy gain) over 0.3 mm with
∼= 12% momentum spread FWHM. With plasma taper the electron bunch is accelerated
to ∼= 90 MeV/c (i.e., 80 MeV/c energy gain) over ∼= 0.7 mm with ∼= 3% momentum
spread FWHM. The plasma taper has allowed the electron bunch to gain four times
the energy and reduced the energy spread by allowing phase locking. Scaling these
quantities to a stage at n0 = 1017 cm−3, we can achieve 8 GeV energy gain for a 228 pC
charge electron bunch in 0.7 m, and with few percent energy spread.

Because the stage is in the quasi-linear regime (a0 ∼ 1) the wake is nearly symmetric
and a positron bunch can be accelerated in the same manner. Figure 2(a) shows the
positron momentum distribution (dashed line) for the same parameters as for the electron
bunch described above. The axial plasma taper is of the form n(x) = n0(6.8 x[cm]+ 1)
with n0 = 1019 cm−3 on axis. Without taper, the positron bunch is accelerated to ∼= 25.5
MeV/c with 7% momentum spread FWHM in 0.2 mm; with taper, the final energy is
∼= 92 MeV/c with 4% momentum spread FWHM in 0.7 mm.

In the previous cases the laser pulse energy is about 30% depleted at the end of the
acceleration stage. For a given laser energy, it is possible to increase the efficiency of
the stage by reducing the laser pulse length and hence increasing the laser strength
a0. Simulations show that for kpL = 1 and a0 =

√
2, the laser depletion length is of

the order of the dephasing length, i.e. more of the laser energy is transferred into the
plasma wake. The higher a0 in this case results in a 40% higher accelerating field Ex/E0
and hence more charge can be loaded into the wake. Figure 2(b) shows the electron
momentum distribution in the previous case (kpL = 2 and a0 = 1) and in the case kpL = 1
and a0 =

√
2, corresponding to the same laser energy, and with the bunch parameters

kpσL = 0.5, kpσr = 1 and Q = 31.4 pC. The wake is about 50% beam loaded, as in the
previous case. The same axial plasma taper is used. With about 40% more charge than
in the previous case, the electron bunch is accelerated to 96 MeV/c (i.e., ∼= 86 MeV/c
energy gain) with∼= 4% momentum spread FWHM. Scaling these quantities to a stage at
n0 = 1017 cm−3, we can achieve almost 9 GeV energy gain for a 300 pC charge electron
bunch in 0.7 m, and with few percent energy spread.

CONCLUSION

PIC simulations have been used to model the evolution of an electron beam in a laser
driven plasma accelerating structure. By using and extending the scalings of the physical
constants with the plasma density, we are able to deduce the properties of the electron
beam for longer stages at lower density and with higher energy gain. We have verified
the scaling for the guiding, the wake structure and for the beam loading. Using the
scaled simulations, we have shown that it is possible to accelerate a few hundreds of
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pC of charge to about 10 GeV at a density of 1017 cm−3 using a 110 J, 60–120 fs laser
and an axial plasma taper which allows increase of the energy gain and reduction of the
momentum spread. In the quasi-linear regime, it is also possible to accelerate positrons
quasi-symmetrically. Further work will be done to study the evolution of the emittance of
the electron bunch in the accelerating stage and to optimize the laser driver parameters
to increase the stage efficiency. Furthermore, the effect of the electron beam betatron
oscillation, which is not constant compared to λp, on emittance and energy spread will
also be studied with scaled simulation at different densities and with reduced models.
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